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Abstract— This paper presents an on-line algorithm which
provides high signal to noise ratio heading predictions for un-
manned ground vehicles. The algorithm uses cross correlation
of SICK laser scans to improve the heading predictions from
GPS. It is tested on our ground vehicles in outdoor urban
environment and verified to provide accurate smooth heading
predictions which help with the accurate localization of the
vehicle.

I. I NTRODUCTION

Unmanned ground vehicles (UGVs) determine their posi-
tion by three parameters: altitude, longitude and heading (i.e.
yaw, referred here asη). Heading is the clockwise deviation
from true North on the X-Y plane The accurate knowledge
of heading is essential for autonomous localization of robots
in an unknown environment. UGVs can obtain the heading
from a variety of sources such as a magnetic compass,
Global Positioning System (GPS) or Inertial Measurement
Unit (IMU). A magnetic compass is sensitive to iron content
in the environment and requires suspension which causes
inaccuracy. IMU provides an estimate of the heading through
double integration of sensed acceleration and suffers from
integration drift caused by skidding and measurement er-
rors. Usually GPS is the most accurate vehicle localization
method. However, it can produce spikes (on the order of 10s
of degrees) and requires line of sight to the satellite which
rules out many indoor environments. It also produces no
reliable heading at low speeds. Our vehicles operate mostly
at speeds which produce low signal to noise heading from
GPS due to their large size and safety issues. There has
been extensive work using cameras as a vision compass to
detect the rotational motion of a robot.1]–[3 However, these
algorithms usually require camera calibration parameters and
in general are not suitable for real-time implementation. The
objective of this paper is to design a fast and inexpensive on-
line algorithm to obtain the vehicle heading from the cross-
correlation of SICK LMS sweeps when GPS is unreliable.

The outline of the paper is as follows. The subsequent sec-
tion introduces MITRE UGVs. Section III presents the algo-
rithm’s derivation and parameterization. section IV presents
the tests of the algorithm and syncing it with GPS, section
V concludes the paper.

II. ROBOTS

The MITRE Corporation has a number of UGVs. Probably
the best known is a 2004 Ford Explorer Sport Trac, named

Meteor.4], [5 Meteor was designed to participate in the De-
fense Advanced Research Projects Agency (DARPA) Grand
Challenge, the purpose of which was to design autonomous
vehicles capable of completing a 132-mile, off-road course.
Meteor was among 23 vehicles that qualified to compete in
the final race.

FIG. 1: Centaur with its sensors.

MITRE also has a pair of Ontario Drive and Gear (ODG)
DM950 Centaur Turbo diesel off-road utility vehicles (Fig-
ure 1). Since they are skid-steer, they are better suited as
models of vehicles used in combat. Currently, the Centaurs
have one GPS each and two SICK LMS, one scanning
horizontally, and the other vertically. If GPS is unavailable
or noisy, the vehicles have no other means of predicting
heading. The Laser Compass algorithm was designed to
mitigate this problem. The specifications of the horizontal
SICK LMS are provided in Table I.

TABLE I: Relevant specifications of horizontal SICK LMS. Trans-
lation and rotation are with respect to vehicle’s origin.

Translation (m) Pitch, yaw, Roll (◦) Range (m) FOV (◦) f (Hz)

1.6, 0.0, -0.8 0.0, 0.0, 0.0 80 180 20

All three UGVs have the same operating system archi-
tecture called wombat. The details of the design and imple-
mentation of wombat are presented elsewhere.6]–[8 Wombat
is a distributed system comprising the robots and the robot
command center. The software architectures consist of agents
which receive state information, change it, and pass it to
other parts of the system. Messages from different sensors
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and components regardless of the programming language,
are broadcast via the UDP protocol on a given subnet.
This scheme facilitates the use of multiple programming
languages. Safety-critical and real-time parts of the system
are written in the Ada. Navigation, maneuvering, user inter-
action, and visualization software are written in Java. The
system runs on GNU/Linux and Windows.

III. M ETHODS

A. Cross-Correlation function

The cross-correlation of two signalsf [m] and g[m]
in an arbitrary dimension measures the degree of similarity
between them as a function of the lagn in that dimension.
The cross-correlation function is calculated as follows:

(f ⋆ g)[n] =

∞
∑

m=−∞

f [m] g[n + m]. (1)

max(f ⋆ g) corresponds to the best fit betweenf and g,
arg max(f ⋆ g) corresponds ton that will produce the best
fit.

B. Transformation for Distance Correction

When Centaurs move forward, objects get larger from one
sweep to another. To correct for this effect, we transformed
the sweep at timet, X(t), to time t− 1. Figure 2 shows the
trigonometric relations of the transformation.
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FIG. 2: Trigonometric relations for the transformation of one ray,
x(t), to t − 1 (x′(t)). The red rectangle is the vehicle, the blue
rectangle is an object,d is the distance traveled,dη is the heading
change

When the vehicle turns, we assume that it moves on an
arc of a circle with radiusr = d

2 sin(dη/2) , whered ≃ v.dt
(assumingdt is small enough so that the arc can be approx-
imated by a straight line).dη is the heading change during
dt; dt is the time difference between the two consecutive
sweepsX(t−1) andX(t). dt is obtained from the encoding
time of laser messages;v is the speed of the vehicle and is
obtained from the average speed of the left and right tracks
of Centaur. When the vehicle moves on a straight line,dη is

zero. In figure 2,

ω = π − θ + dη/2. (2)

x′

t =
√

x2
t + d2 − 2dxt cos(ω) (3)

dη/2 − α = sin−1(
xt sin(ω)

x′

t

) (4)

The formulas transformX(t) on A in figure 2.A is non-
uniform and it does not correspond to the original vector of
sweeps,Θ. To obtain the transformation onΘ , polynomial
interpolation is employed to interpolateX ′ on Θ from A.
The interpolation yields the new sweep vectorΘ

′(t).
This transformation is non-linear whendη is non zero.

After the transformation and interpolation, it is possible
for the range ofΘ′(t) to be different fromΘ(t − 1).
Only segments ofX ′(t) and X(t − 1) corresponding to
Θ(t − 1) ∩ Θ

′(t) are used in the cross correlation.
The transformation depends ondη which is unknown.

Initially dη is set to zero, and the algorithm minimizes the
root mean square deviation (RMSD) betweenX

′(t) and lag-
shiftedX(t − 1) with respect todη.

C. Processing laser scans

Centaurs operate outdoors in a dynamic environment.
LMS record the environment in polar coordinates, and ob-
jects that are at the same distance from the vehicles register
on a parabola. An exception is a no-return. When the laser
ray is lost due to hitting a black, shiny object or the horizon,
the recorder registers the maximum possible distance, which
is 81.9 m regardless of the angular orientation of the laser
beam. We call these values no-returns.

No-returns throw off the correlation sum. Because a no-
return is the largest value in the distance space of the SICK
lasers, when there is a significant number of them present, the
correlation function will correlate the no-returns as opposed
to everything else. Depending on the environment, a great
number of recordings can be no-returns as shown in a
sweep histogram in figure 3B. Removing no-returns from
the sweeps produced low-quality algorithm performance, as
did removing them and interpolating between the remaining
points with a number of different interpolation methods. We
believe this is because no-returns provide information about
the environment. If they correspond to the horizon or a large
black car, they keep their relative location on two consecutive
scans.

The following procedure proved successful. First, we
removed all isolated no-returns. We calculated the histogram
of the sweep and set all the no-returns to the median of
the second largest histogram bin. An example is shown in
figure 3.

D. Implementation notes

When the laser scans an obstacle att− 1, it has more
information about the environment behind the obstacle than
it does at timet. When the sweep at timet is transformed
to t − 1 it will have a wider field of view around obstacles,
but no information about this environment. These blind spots
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FIG. 3: A) An example of a laser sweep before and after scaling of
no-returns. Red line is the original laser sweep. Green line is same
sweep after cleanup. B) The histogram of the original laser sweep.
The median of the largest bin after no-returns is 55 m.

were treated as no-returns and scaled. We also interpolated
the laser sweeps to increase the resolution of the heading
prediction. The default bin size is 0.5 degrees. We interpo-
lated the sweep ten times using polynomial interpolation to
reduce the bin size (∆θint) to 0.05 degrees.

The cross correlation formula (Equation 1) is quadratic
(O(N2), whereN = |X(t)|). The cross-correlation can be
obtained from the Fourier transform which can be imple-
mented inN log N time. We experimented with two Fourier
transform implementations. The Java Fourier transform li-
brary of Apache turned out to be slower than the quadratic
implementation which does not use Fourier transform for
small arrays because of its extensive use of memory heap
(Table II). We used an efficient implementation which does
not use memory heap.9 Table II shows the run times of
the three implementations. The run times were obtained by
generating arrays of 400, 4000 and 40,000 random numbers
and cross correlating them 100 times. The outline of the
algorithm is presented in Algorithm 1.

IV. RESULTS

A. Performance evaluation

The laser compass is a feed-forward algorithm and it
does not have any mechanism for correcting mistakes, and it
suffers from integration drift from ground truth over time. If

TABLE II: Running times (in seconds) of different Cross-
correlation algorithms.

Array size 400 4000 40000
Quadratic algorithm 75 7389 734780

Apache Fourier 159 2992 90637
Fourier w/o memory heap 36 380 12070

Algorithm 1 : Layout of laser compass algorithm

Data: X(t − 1), X(t), dt, v
Result: Differential heading∆ηLC

(t)
begin

Remove no-returns fromX(t − 1) andX(t) ;
error = ∞;
∆ηLC

(t) = 0;
while ∆error 6= 0 do

(X ′(t), Θ
′(t))=transform(X(t), dt,

∆ηLC
(t), v);

Fill blind spots ofX ′(t);
[Rmin,Rmax]= Θ(t − 1) ∩ Θ

′(t);
X

I(t − 1)=Interpolate(x(t− 1, Rmin : Rmax));
X

I(t)=Interpolate(x
′

(t, Rmin : Rmax));
C = (XI(t − 1) ⋆ X

I(t));
j = argmax C;
RMSD =

√
∑

i (xI(t − 1, i + j) − xI(t, i))2;
∆ = j ∗ ∆θint;
∆error = RMSD − error;
if ∆error < 0 then

error = RMSD;
∆ηLC

(t) = ∆;
end

end
return ∆ηLC

(t)
end

GPS signal is available and reliable, it is used to correct for
the drift. Initially, we evaluated the algorithm’s performance
without any GPS corrections. We collected two short log
files on Centaur 1 operating in the MITRE parking lot. We
compared the GPS heading with the laser compass headings.
The graphs are shown in figure 4A and B. As expected, the
drift between laser compass and ground truth increases with
time. However, the compass can reproduce ground truth’s
features remarkably well.

To determine the performance of the algorithm for more
dynamic environments, we performed a long run with Cen-
taur 2 where we started the robot in the MITRE parking lot
and then drove it for 20 minutes on the MITRE campus,
as well as nearby streets and highways (Figure 4C). In
figure 4C, we reset the laser compass heading twice to GPS
at 410 s and 500 s to make comparisons of the two graphs
easier. From figure 4C, it is evident that the laser compass at
times underestimates the turns significantly. For example, at
550 s, it underestimates the turn by 125 degrees. The reason
for the poor performance for this segment is due to a lack of

© The MITRE Corporation. All rights reserved



A

B

C

η
(d

eg
re

e
s)

Incremental encoding time (s)

FIG. 4: (A and B) Two short runs in the MITRE parking lot comparing the performance of Laser compass (red line) and GPS (blue
line). At the end of both runs, Centaur is parked. The drift gets larger over time. C) A 20 minute run comparing the performance of the
algorithm with GPS. Laser compass was reset to GPS twice at 410 s and 500 s to make comparison easier. The algorithm suffers from
lack of features in the laser sweeps especially when the robot is taking sharp turns (for example at 550 s).

features across consecutive laser sweeps. During this time,
the robot is passing an intersection to cross a highway and
there are few features within the laser’s recording range. A
camera snapshot of Centaur’s field of view during this time
(figure 5A) shows that the vehicle is taking a sharp turn in
an environment where there is nothing within the recording
range. The lack of features means that consecutive laser
sweeps are very similar although the environment changes
significantly (figure 5B).

Another problem for the algorithm are large dynamic fea-
tures which register significantly on SICK lasers, especially
when Centaurs themselves are stationary. For example, when
Centaur is stopped at the red light in front of a busy highway,
large trucks and buses result in heading change (data not
shown). To alleviate this effect, we employed two measures
(see sectionC for implementation details). We do not update
the heading when the average speed of the vehicle is zero,
and we put a maximum threshold (∆ηLC

(t) < 10o) on
the amount of heading change we allow. Usually a fast
moving object results large heading derivative (on the order
of 20o) in two consecutive sweeps (in about 0.2 s). We
discard these values and use the last best known heading
estimate (∆good, see sectionC). With a current single SICK
laser, the laser compass is data limited. This algorithm should
work well when there are multiple laser sweeps per laser
(e.g. Velodyne lidar). We are currently in the process of
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FIG. 5: A) A camera snapshot of Centaur aroundt = 550 s in
figure 4C. B) Two consecutive laser sweeps during the same time.
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implementing a Velodyne lidar on our Centaurs. However, for
the current instantiation, the laser compass needs periodic re-
synchronization with a GPS when it is available and reliable.

B. Statistics

The algorithm uses a number of parameters to calculate
the heading. We performed a statistics-based study of these
parameters to make sure that they are reliable. The statistics
were calculated from two hours of combined runs from both
centaurs.

The laser compass uses the speed of the Centaur’s tracks
to calculate the average and assumes that the speed of the
vehicle is equal to this average. For this assumption to be
valid, the speed of the two tracks have to be almost the same.
Figure 6 shows the two tracks plotted against each other. The
coefficient of correlation between them is more than 0.9.
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FIG. 6: Comparison of Centaur’s left track speed with right track
speed. There is very good correlation between the speed of the two
tracks with the coefficient of correlation of 0.9.

To determine how accurate the average speed is compared
to ground truth, we compared it to GPS speed. In general, we
found a very good correlation between GPS and the average
track speed (data not shown), except at points where the GPS
speed made large excursions. As expected, most of these
excursions happened at low speeds. Once GPS outliers were
removed, we found very good agreement between GPS speed
and average track speed with the correlation coefficient more
than 0.9. It is interesting to note that the magnitude of the
errors in the GPS speed are similar on the same days.

GPS heading does not depreciate linearly with the de-
crease in speed of the vehicle. Due to its internal correction
models, GPS produces relatively small noise in the heading
magnitude before suddenly breaking down. To determine this
break-point, we calculated the mean and standard deviation
of GPS heading and GPS speed over a 20 point data window.
Since we needed the speed to be very accurate, we removed
all the data points from our samples where the standard
deviation of speed was more than 0.1 m/s. Figure 7 shows
that once the speed falls below 0.5 m/s, heading is not
reliable. We did not merge GPS with laser compass when
speed was less than 1 m/s (see sectionC).
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FIG. 7: Heading from GPS becomes unreliable once the speed of
vehicle falls below 0.5 m/s. There are a few outliers on the graph
around 1.25 m/s.

C. Merge with GPS

The laser compass produces much less noisy heading
predictions than GPS. When merging the two, it would be
desirable to keep this feature of the laser compass in merged
heading. To sync the two, we used anα-β tracker.10 We first
calculated the derivative of GPS

∆GPS(t) = ηGPS(t) − ηGPS(t − 1) (5)

and usedσ(∆GPS) (i.e. the standard deviation of the
derivative of GPS) as the criteria for merge. From our
statistics-based study, we chose the following parameters for
our filter

α =

{

0 σ(∆GPS) > 5◦ or v < 1m/s
1
20 otherwise

and

βdt =







0 v = 0
∆ηLC

(t) ∆ηLC
(t) < 10◦

∆good otherwise

we calculated the merged heading (η̂) by the three iterative
equations ofα-β filter

η̂(t) = η̂(t − 1) + βdt (6)

r(t) = ηGPS(t) − η̂(t) (7)

η̂(t) = η̂(t) + αr(t) (8)

Figure 8 shows to relative long runs comparing merged
heading with GPS heading. The first row corresponds to
the run of Figure 4C. The spike in the GPS heading at
t=370 s is due to GPS error. GPS heading has a large standard
deviation at this point and does not get merged. The second
row corresponds to a run of Centaur 1 in MITRE parking
lot.
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FIG. 8: Merged heading for two runs. A) long run of Centaur 2 in figure 4C. The GPS spike att = 370 s has a largeσ and it does not
get incorporated to the merged heading. B) A run of Centaur 1 on MITRE parking lot.

V. CONCLUSIONS

This paper presents an on-line algorithm that uses
SICK laser scans and cross-correlation function to improve
the heading predictions of GPS in UGVs. The algorithm
produces heading that has higher signal to noise ratio than
that of GPS alone.

There has been extensive work in the field of simulta-
neous localization and mapping (SLAM).11], [12 Algorithms
that solve SLAM, provide not only heading, but also the
displacement along the x and y direction, as well as the map
of the environment. However, SLAM algorithms are usually
computationally expensive and have various shortcomings. If
GPS is available and reliable, it out-performs SLAM algo-
rithms in localization. However, GPS suffers from outages
and high signal to noise ratio at low speeds or spikes. In this
paper, we have addressed these issues.

Our algorithm can also be used to improve the per-
formance of motion models. In most motion models, the
new x and y displacement are determined from heading by
projecting the heading onto the x and y coordinates. If there
is no means of heading prediction available, the heading
is drawn from a random distribution. This ties the motion
model to the type of the distribution picked and whether the
assumption is valid. The error in heading can propagate to
x and y displacement and result in poor localization. Using
laser compass as a source of heading as opposed a randomly
sampling it from a probability distribution can improve the
quality of motion models significantly. We are in the process
of implementing this concept for Centaurs.
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