OMPL: The Open Motion Planning Library

Mark Moll

Department of Computer Science
Rice University

Houston, TX

USA

Intended use

¢ Education

e Motion planning research

® |Industry

Design objectives

e Clarity of concepts
e Efficiency
e Simple integration with other software packages

e Straightforward integration of external contributions

Other motion planning software

e MPK, Schwarzer, Saha, Latombe

e MSL, LaValle et al.

e OpenRAVE, Diankov & Kuffner

e KineoWorks, Laumond et al.

e OOPSMP, Plaku et al.

Other related robotics software

e ROS

e Player/Stage, Player/Gazebo

e \Webots

* MORSE

e Microsoft Robotics Developer Studio

Main features of OMPL

OMPL in a nutshell

e Common core for sampling-based motion planners

¢ |Includes commonly-used heuristics

e Takes care of many low-level details often skipped in corresponding papers

Abstract interface to
all core motion planning concepts

e state space / control space

e state validator (e.g., collision checker)

e sampler

e goal (problem definition)

® planner

except robot & workspace...

States & state spaces

[abstract state space J

States & state spaces

[abstract state space

)

)

>

API requirements:

StateType
alloc/free state
distance
interpolation
state equality

States & state spaces

API requirements:

- StateType

- alloc/free state
] - distance

{abstract state space) > = Interpolation

- state equality

[rotation (2D,3D) J [translation (R") J

States & state spaces

API requirements:
- StateType
alloc/free state
distance
interpolation
state equality

|

[abstract state space)

/ AN

[rotation (2D,3D) J [translation (R") J
' used for:
[Compound - rigid body motions

- manipulators

Control spaces & controls

e Needed only for control-based planning

e Analogous to state spaces and states:
API requirements:

) - ControlType
_ - alloc/free control
[abstract control space] _ equality

T %) [compans

State validators

e Problem-specific; must be defined by user or
defined by layer on top of OMPL core — ompl_ros_interface

e Checks whether state is collision-free, joint angles and velocities are within
bounds, etc.

e Optionally, specific state validator implementations can return
e distance to nearest invalid state (i.e., nearest obstacle)
e gradient of distance

Can be exploited by planners / samplers!

Most common state validator:
collision checker

image from pointclouds.org

Several options:

e Implemented in ROS on top of sensor-derived
world model

e Implemented in OMPL.app for triangle meshes
using PQP library

e Easy to add wrappers for other libraries
images from PQP web site

Need to define specific world representation to
Implement collision checking

Samplers

® [For every state space there needs to be a state sampler

e State samplers need to support the following:

Samplers

® [For every state space there needs to be a state sampler

e State samplers need to support the following:

e sample uniform o

Samplers

® [For every state space there needs to be a state sampler

e State samplers need to support the following:

e sample uniform

e sample uniform near given state

e -

Samplers

® [For every state space there needs to be a state sampler

e State samplers need to support the following:

e sample uniform

e sample uniform near given state

e sample from Gaussian centered at given state

e -

Many ways to get sampling wrong

Example: uniformly sampling 3D orientations

Images from Kuffner, ICRA 04

Similar issues occur for nearest neighbors

® k nearest neighbors can be computed efficiently with kd-trees in
low-dimensional, Euclidean spaces.

¢ In high-dimensional spaces approximate nearest neighbors much better

e In non-Euclidean spaces (e.g., any space that includes rotations), other data
structures are necessary

Valid state samplers

e Valid state samplers combine low-level state
samplers with the validity checker

e Simplest form: sample at most n times to get
valid state or else return failure

Valid state samplers

e Valid state samplers combine low-level state
samplers with the validity checker

e Simplest form: sample at most n times to get
valid state or else return failure

e Other sampling strategies:

Valid state samplers

e Valid state samplers combine low-level state
samplers with the validity checker

e Simplest form: sample at most n times to get
valid state or else return failure

e Other sampling strategies:

e Try to find samples with a large clearance

Valid state samplers

e Valid state samplers combine low-level state
samplers with the validity checker

e Simplest form: sample at most n times to get
valid state or else return failure

e Other sampling strategies:

e Try to find samples with a large clearance

e Try to find samples near obstacles
(more dense sampling in/near narrow
passages)

Goals

Goal can only tell whether state
satisfies Goal condition

[GoalRegion

T

[GoalSampIeableRegion] can sample from

goal region
/' \

[GoalState] [GoalStates] multiple goal states

single goal state

provides distance
to goal region

GoalLazySamples multiple goal states,
computed in

separate thread

Planners

e Take as input a problem definition:
object with one or more start states and a goal object

¢ Planners need to implement two methods:

¢ solve:
— takes PlannerTerminationCondition object as argument
— termination can be based on timer, external events, ...

* clear:
clear internal data structures, free memory, ready to run solve again

Many planners available in OMPL

[Planner
geometric planning
PRM RRT EST
SBL KPIECE || BKPIECE
LBKPIECE|| LazyRRT ||RRTConnect

planning with controls

[

_

RRT

\

J

[

_

KPIECE

Many planners available in OMPL

[Planner
geometric @ing
i PRM I RRT I EST j
i SBL I KPIECE IBKPIECE:
iLBKPIECE: i LazyRRTj iRRTConneCE
[SyCLoP J[RRT* J(BaIITreeRRT*\

& J

coming soon!

just added!

planning with controls

(

_

RRT

\

J

(

_

KPIECE

APl overview

only when planning with differential constraints

i ControlSampler ~ el VIO LTI |

StatePropagator

SICICRT Il StateSampler

APl overview

only when planning with differential constraints

i ControlSampler ~ el VIO LTI |

StatePropagator

SICICRT Il StateSampler

3]

Planner

\4

I must instantiate
seneoce { i must instantiate, unless using SimpleSetup
.......... . can instantiate, but defaults available

A—>B A is owned by B

APl overview

only when planning with differential constraints

i ControlSampler ~ el VIO LTI |

StatePropagator

SICICRT Il StateSampler

3]

Planner

\4

- must instantiate
e ; must instantiate, unless using SimpleSetup
.......... . can instantiate, but defaults available

A—>B A is owned by B

User code

APl overview

only when planning with differential constraints

i ControlSampler ~ el VIO LTI |

StatePropagator

3]

Planner

\4

- must instantiate
e ; must instantiate, unless using SimpleSetup
.......... . can instantiate, but defaults available

A—>B A is owned by B

User code

Minimal code example

space = SE3StateSpace ()
set the bounds (code omitted)

ss = SimpleSetup (space)
"isStateValid" is a user-supplied function
ss.setStateValidityChecker (i1sStateValid)

start = State (space)

goal = State (space)

set the start & goal states to some values
11 # (code omitted)

12

13 ss.setStartAndGoalStates (start, goal)

14 solved = ss.solve(1l.0)

15 1f solved:

16 print setup.getSolutionPath ()

O 0 939 O W & W N -

p—
()

Minimal code example

StateSpacePtr space (new SE3StateSpace());
// set the bounds (code omitted)

SimpleSetup ss(space);
// "isStateValid" is a user-supplied function
ss.setStateValidityChecker (1sStateValid);

ScopedState<SE3StateSpace> start (space);
ScopedState<SE3StateSpace> goal (space);

// set the start & goal states to some values
// (code omitted)

O 0 N9 & W & W N -

S e O S
w NN = O

ss.setStartAndGoalStates (start, goal);

14 bool solved = ss.solve(l.0);

15 1f (solved)

16 setup.getSolutionPath () .print (std: scout) ;

10

time (sec.)

Benchmarking

1 2 T T T T T T T 1 O 0 ‘
- :‘: -
* 8ot 1
| . § |
+ _. 60} i
+ i_ 4 :_ S_\O’
* I
6 I o
f —:!:— ! T : g
| | | | 8
4 + : : !
i]
]
! i T I
X | | | : 20
| T _i_ | ;
I I T
I - I
, | e o == o
—— 1 1 I I I L 0
SR o 2AdNEe A I R) pot & o8
ot o\ Q\C \C o
& \o* * ©e R

Benchmarking

SimpleSetup setup;
// motion planning problem setup code omitted
Benchmark b(setup, “My First Benchmark”);

.addPlanner(base: :PlannerPtr(new geometric: :RRT(setup.getSpaceInformation())));
.addPlanner(base: :PlannerPtr(new geometric: :KPIECE1(setup.getSpaceInformation())));
.addPlanner(base: :PlannerPtr(new geometric: :SBL(setup.getSpaceInformation())));
.addPlanner(base: :PlannerPtr(new geometric::EST(setup.getSpacelnformation())));
.addPlanner(base: :PlannerPtr(new geometric: :PRM(setup.getSpacelnformation())));

©C © ©T O O

C

.benchmark(runtime_limit, memory_limit, run_count, true);
.saveResultsToFile();

(o

Script post-processes benchmark log files
to create/update SQLite database and plots

OMPL.app

e Front-end that demonstrates integration with libraries for collision checking,

3D mesh loading, GUI toolkit

e Easy-to-use tool for novices to get started

e Alternative to ompl_ros_interface

fMNO

E Show Exploration

__ Animate

{Pmbhm | Planner Bounding box

Robot type | Rigid body planning (3D) 1%

Start pose
Position Rotation
x 11s9 [ooo [
Y -7023 (2 oo0o [7)
z 7837 [ooo [
Coal pose

Position Rotation
x 20000 [: ooo [7]
y -7023 [2) 000 [7)
z 7837 [ooo [J

Speed: O

OMPL.app demo / screencast

& Terminal Shell Edit View Window Help =2 W O «+ = @100 B Wed 1249PM & Q

e -
e O 4 mmoll — Prana:~ — bash

Resources to get started with OMPL

en0n OMPL: Introduction e

L4 >+ @ nttp://omplkavrakilab.org/index.htmi 5 ¢ | (2§ Coogle |0

The Open Motion Planning Library

Home Download Documentation Code APl About v

0 M P L O n I i ne Introduction

[——

Bt e R 1)

e Web site:
http://ompl.kavrakilab.org

The Open Motion Planning Library (OMPL) consists of many state-of-the-ant sampling-based motion planning algarithms, OMPL itself does not
Contain any code related to, e.g., collision checking or visualization. This is a deliberate design choike, O that OMPL is not tied 10 & particular
collision checker or viswalization front end.

OMPLapp, the fromt~end for OMPL, contains a lightweight wrapper for the PQP collision checker and a simple CUI based on PyQe. The graphical
front-end can de used for simple rigid body planming. It relies on the Assimp library to import a large variety of mesh formats that can be used to
represent the rodbot and its environment.

We Rave als0 developed a teaching module on motion planning that is centered around OMPLapp. We are looking for educational pariners 10 use
and farther develop the material, Please contact us for more information

For example uses of OMPL, see our gallery page.

- - |}
¢ Mailing lists:
I I I u To view documentation for OMPL solely, click here.

e Developers: ompl-devel@lists.sourceforge.net

e Users: ompl-users@lists.sourceforge.net

e Public Mercurial repository:
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl

http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
http://ompl.kavrakilab.org
mailto:ompl-devel@sf.net
mailto:ompl-devel@sf.net
mailto:ompl-users@lists.sourceforge.net
mailto:ompl-users@lists.sourceforge.net
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl
http://ompl.hg.sourceforge.net:8000/hgroot/ompl/ompl

OMPL for education

e Programming assignments centered around OMPL, available upon request.
¢ Ongoing educational assessment.

e Already in use in several robotics / motion planning classes.

Happy OMPL users: students in the Algorithmic Robotics class at Rice, Fall 2010

- . » -
s | -

-

- A ‘.j»-o -* w i f

‘....'< "

-

& Iv
- - C 3 e -
- s ‘ - é
e —~ . -
‘ \
' h N " . .h
B e s - '« — -
P T) - ;. * v
-
- -
- . R .

|

OMPL tutorials

Step-by-step walkthroughs for:

e geometric planning for rigid body in 3D

e working with states and state spaces

® representing goals

* benchmarking

e creating new planning algorithms

OMPL examples

e Many demos for basic usage patterns,
often available in both C++ and Python

e Demos for advanced features:

1. Lazy goal sampler, generic numerical IK solver

2. Using the Open Dynamics Engine

Example 1: lazy goal sampler + IK

e Spawn thread responsible for generating goal states

® generate as many goal states as user wants

e OMPL comes with Genetic Algorithm-based IK solver,
but other types of solvers can be used

e Planner waits until at least one goal state is available

e Can use bi-directional planner with implicit goal region in state space

e Same approach is used in ROS for end-effector constraints

Example 2: OMPL + ODE

e Treat ODE physics engine as a black box state propagation function:
Given state, controls, and time duration, ODE produces new state

e Can plan for systems with movable objects, various contact modes, etc.

e Same approach can be used for other physics engines

Discussion

e OMPL actively developed, but ready for general use
e Can easily implement new algorithms from many reusable components
e Simple high-level interface:
e Can treat motion planner almost as a black box
e Easy enough that non-experts can use it
¢ Interface generic enough to be extensible in many ways

We want your contributions!

Acknowledgements

Rice University:
loan Sucan
Lydia Kavraki
Matt Maly

Devin Grady
Bryant Gipson
Amit Bhatia

Willow Garage:

Sachin Chitta

Gil Jones

Funding from:
NSF CCLI grant #0920721

Willow Garage

