
CHAMP: Changepoint Detection Using

Approximate Model Parameters

Scott Niekum1,2 Sarah Osentoski3 Christopher G. Atkeson1

Andrew G. Barto2

Abstract

We introduce CHAMP, an algorithm for online Bayesian changepoint detection in settings
where it is difficult or undesirable to integrate over the parameters of candidate models. Rather
than requiring integration of the parameters of candidate models as in several other Bayesian
approaches, we require only the ability to fit model parameters to data segments. This approach
greatly simplifies the use of Bayesian changepoint detection, allows it to be used with many more
types of models, and improves performance when detecting parameter changes within a single
model. Experimental analysis compares CHAMP to another state-of-the-art online Bayesian
changepoint detection method.

1 Introduction

Many practical applications in statistics require detecting changes in the parameters and mod-
els that generate observed data. Commonly cited examples include detecting changes in stock
market behavior [4], well drilling data [5], and DNA segmentation [3]. Bayesian changepoint de-
tection methods offer notable advantages over their frequentist counterparts, including the ability
to generate a full posterior distribution over changepoint locations and offering a natural way to
incorporate prior knowledge. However, many Bayesian approaches to changepoint detection re-
quire parameters of the candidate models to be marginalized [1, 5]. This can be problematic in
two ways. First, if the model is in a difficult form to analytically integrate, and the parameter
space is too high-dimensional to numerically integrate, such methods are impractical. Second, in
some cases, parameter integration can lead to an inability to detect changes in parameters within
a single model.

We introduce an algorithm for online Bayesian changepoint detection in settings where it is dif-
ficult or undesirable to integrate over the parameters of candidate models. Building on the work
of Fearnhead and Liu [5], we show that with some modifications, approximate online Bayesian
changepoint detection can be performed using estimates of the maximum likelihood parameters
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for each segment—for example, via regression or a sample consensus method. Our modifications
also remove a significant restriction on model definition when detecting parameter changes within
a single model. We call this new algorithm CHAMP (Changepoint detection using Approximate
Model Parameters). Finally, the capabilities of CHAMP are experimentally verified using artifi-
cially generated data and are compared to those of Fearnhead and Liu [5].

2 Related work

Hidden Markov Models (HMMs) are largely the de facto tool of choice when analyzing time series
data, but the standard HMM formulation has several undesirable properties. The number of hidden
states must be known ahead of time (or chosen using model selection), inference is often costly and
subject to local minima when algorithms like Expectation-Maximization are used, and segment
lengths are inherently geometrically distributed. Nonparametric Bayesian models like the HDP-
HMM [6] relax some of these conditions, but incur a new set of challenges, including the need
for MCMC-based inference. In settings where the primary objective is to identify model changes
without considering shared hidden states across segments, changepoint detection methods can be
a more appropriate algorithmic choice.

Frequentist approaches to changepoint detection and piecewise regression include methods such
as PELT [7] that can perform exact inference in linear time over a wide range of cost functions.
Alternately, Chopin [4] introduces a Bayesian changepoint detection algorithm that uses a recursive
filtering approach, but requires MCMC steps for parameter inference. Building on this work,
Fearnhead and Liu present an approximate Bayesian changepoint detection algorithm [5] that can
perform online inference efficiently, finding the distribution of locations of the changepoints and the
model parameters of each segment using computational time linear in the number of observations.
However, this work requires that model parameters can be marginalized, as does a similar approach
by Adams and MacKay [1]. Other approaches to multiple model fitting have been proposed, such
as MultiRANSAC [8], but cannot take advantage of the time-series nature of our setting.

3 Changepoint Detection using Approximate Model Parameters

3.1 Online MAP Changepoint Detection

First, we describe the online MAP (maximum a posteriori) changepoint detection model of Fearn-
head and Liu [5]. Assume we have time-series observations y1:n = (y1, y2, . . . , yn) and a set of
candidate models Q. Our goal is to infer the MAP set of changepoints times τ1, τ2, . . . , τm, with
τ0 = 0 and τm+1 = n, giving us m + 1 segments. Thus, the ith segment consists of observations
yτi+1:τi+1

and has an associated model qi ∈ Q with parameters θi.

We assume that data after a changepoint is independent of data prior to that changepoint, and we
model the changepoint positions as a Markov chain in which the transition probabilities are defined
by the time since the last changepoint:

p(τi+1 = t|τi = s) = g(t− s), (1)

where g(·) is a probability distribution over time and G(·) is its cumulative distribution function.
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Given a segment from time s to t and a model q, define the model evidence for that segment as:

L(s, t, q) = p(ys+1:t|q) =

∫
p(ys+1:t|q, θ)p(θ)dθ. (2)

It can be shown how the standard Bayesian filtering recursions and an online Viterbi algorithm
can be used to efficiently estimate Ct, the distribution over the position of the first changepoint
prior to time t [5]. Define Ej as the event that given a changepoint at time j, the MAP choice of
changepoints has occurred prior to time j and define:

Pt(j, q) = p(Ct = j, q, Ej ,y1:t) (3)

PMAP
t = p(Changepoint at t, Et,y1:t). (4)

This results in the equations:

Pt(j, q) = (1−G(t− j − 1))L(j, t, q)p(q)PMAP
j (5)

PMAP
t = max

j,q

[
g(t− j)

1−G(t− j − 1)
Pt(j, q)

]
. (6)

At any point, the Viterbi path can be recovered by finding the (j, q) values that maximize PMAP
t .

This process can then be repeated for the values that maximize PMAP
j , until time zero is reached. A

straightforward alternate formulation [5] allows for the simulation of the full posterior distribution
of changepoint locations, though in this work, we focus only on the MAP changepoints.

The algorithm is fully online, but requires O(n) computation at each time step, since Pt(j, q) values
must be calculated for all j < t. To reduce computation time to a constant, ideas from particle
filtering can be leveraged to keep only a constant number of particles, M , at each time step, each
of which represent a support point in the approximate density p(Ct = j,y1:t). At each time step,
if the number of particles exceeds M , stratified optimal resampling [5] can be used to choose which
particles to keep in a manner that minimizes the KL divergence from the true distribution in
expectation.

3.2 CHAMP

The model evidence shown in Equation 2 requires that the parameters of the underlying model can
be marginalized. This requires the use of either conjugate priors, allowing analytical integration,
or a low dimensional parameter space that can be efficiently numerically integrated. However,
many models do not fit into either of these categories, requiring an alternate solution for when
only point-estimates of model parameters are available. Furthermore, marginalization of the model
parameters can prevent the detection of changepoints in which the model stays the same, but the
parameters of the model change. This can happen when the model being considered treats each
data point as independent; since the likelihood can be factorized into a product and the model
parameters are marginalized, the likelihood function shows no preference for multiple segments in
the case of a parameter change within a model.

For example, imagine generating a set of independent data points under model q with parameters
θab for ya:b and parameters θbc for yb:c. Despite the different underlying parameters for each
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segment, ∫
p(ya:c|q, θ)p(θ)dθ

=

∫
p(ya:b|q, θ)p(θ)dθ

∫
p(yb:c|q, θ)p(θ)dθ.

Notice that this is not the case for some models, such as the autoregressive models originally used
by Fearnhead and Liu [5].

We present CHAMP (Changepoint detection using Approximate Model Parameters)—a modified
version of Fearnhead and Liu’s changepoint algorithm that allows the use of models of any form
(with independent emissions or otherwise), in which parameter estimates are available via means
such as maximum likelihood fit, MCMC, or sample consensus methods. We propose three primary
changes to best accommodate this new setting.

3.2.1 Approximate model evidence

The Bayesian Information Criterion (BIC) is a well-known approximation to integrated model
evidence [2] that provides a principled penalty against more complex models by assuming a Gaussian
posterior distribution of parameters around the estimated parameter value θ̂. Using the BIC, the
model evidence can be approximated as:

lnL(s, t, q) ≈ ln p(ys+1:t|q, θ̂)−
1

2
kq ln(t− s), (7)

where kq is the number of free parameters of model q. This approximation allows us to avoid
directly evaluating the model evidence integral.

3.2.2 Minimum segment length

Since we are now assuming that parameter estimates come from some type of model fitting pro-
cedure, the quantity L(s, t, q) is no longer well-defined for all t > s. Instead, each model q has a
minimum value of t − s for which the model is defined. For example, a line requires a minimum
of two points to define, whereas a plane requires three. As a simplification, and to prevent overfit-
ting, some sufficient minimum segment length α can be chosen for all models. This requires three
changes: changepoints can only begin to be considered at time t = 2α (when a changepoint in the
center would create two equal halves of length α), Pt(j, q) must only be calculated for values of
t− j > α, and the choice of a segment length distribution g(·) must be reconsidered.

Fearnhead and Liu suggest the use of a geometric length distribution [5], as it arises naturally from
a constant probability of seeing a changepoint at each time step. However, it is a monotonically
decreasing distribution with a mode of 1 that favors shorter segments, which can lead to overfit-
ting, especially in a setting with fitted model parameters. As an alternative, Chopin [4] suggests
using a uniform prior over limited support to ensure it is well-defined. However, this artificially
places a hard limit on segment lengths, regardless of the data. We propose the use of a truncated
normal distribution, which enforces a minimum segment length naturally, has easily interpretable
parameters, and is less prone to overfitting:

g(t) =
1
σφ
( t−µ
σ

)
1− Φ

(α−µ
σ

) (8)
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G(t) = Φ

(
t− µ
σ

)
− Φ

(
α− µ
σ

)
, (9)

where φ is the standard normal PDF, Φ is its CDF, and α is the minimum segment length. Since
the mode of the distribution is close to the mean (or identical if no truncation occurs), segment
lengths are pushed toward the mean, instead of being pushed toward 1. By using a broad value of
σ, we can support a wide range of segments lengths, while leaving µ as a adjustable parameter that
can be tuned if over-segmentation or under-segmentation is an issue. Alternatively, if specific prior
knowledge about segment length is known, µ can be set accordingly with a more narrow value of
σ to restrict segment length appropriately.

3.2.3 Particle definition

Finally, since model fitting can be an expensive procedure, we suggest a slight revision of the
definition of a particle from that of Fearnhead and Liu. Previously, each particle represented a
support point to approximate the joint distribution p(Ct = j,y1:t), marginalizing over models q.
To potentially save on the number of required model fits, we suggest each particle also include the
model, so that our approximated distribution is p(Ct = j, q,y1:t), allowing particular models to be
selectively discarded at each time step. This also prevents us from overlooking the possibility of a
changepoint at a given time step when only one model is a reasonable fit and the others are very
poor.

Figure 1 provides pseudocode for CHAMP. Additionally, an open-source implementation of CHAMP
as a ROS service is available online 1.

4 Experiments

4.1 1D Gaussian: zero mean, parameterized variance

First, we present an experiment to demonstrate the ability of CHAMP to reliably detect change-
points using maximum likelihood parameter estimates for models with independent emissions. Five
segments of data were generated (of lengths 40, 60, 30, 50, and 70) by making draws from a zero-
mean Gaussian distribution with parameterized variance (σ = 2.0, 1.0, 3.0, 1.5, and 2.5), shown in
the left panel of Figure 2. CHAMP was then used to try to recover the locations of the changepoints
with the following parameters: a truncated Gaussian length distribution with µ = 50 and σ = 10,
a minimum segment length of 2, and 100 maximum particles. We compared this analysis with
that of the original Fearnhead and Liu algorithm under the same parameters (where applicable) by
integrating the likelihood function with a conjugate Gamma prior on the precision τ , and setting
hyperparameters a = 4.0, b = 0.5:

L(s, t, q) =

∫ ∞
0

t∏
i=s+1

N (xi|µ = 0, τ−1)Gam(τ |a, b)dτ

= Γ(a+ 1/2)
ba

Γ(a)

1√
2π

(
b+

x2

2

)−a−1/2
.

1http://wiki.ros.org/changepoint
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Input: Observations y1:n, candidate models q1, . . . , qr, prior distribution π(q), minimum seg-
ment length α, and maximum number of particles M .
Output: Viterbi path of changepoint times and models

// Initialize data structures
1: max path, prev queue, particles = {}
2: prev queue.push(1/r)
3: for i = 1 : r do
4: new p = newParticle(pos = 0, model = qi, prev MAP = 1/r)
5: particles.add(new p)
6: end for

// Do for all incoming data, starting at time α
7: for t = α : n do

// Add new particles
8: if t >= 2α then
9: pref = prev queue.pop() // PMAP

t α steps ago
10: for i = 1 : r do
11: new p = newParticle(pos = t−α, model = qi, prev MAP = prev)
12: particles.add(new p)
13: end for
14: end if

// Compute fit probabilities for all particles
15: for p ∈ particles do
16: p tjq = L(p.pos, t, q) · π(q) · p.prev MAP
17: p.MAP = g(t− p.pos) · p tjq
18: end for

// Find max particle and update Viterbi path
19: max p = maxp p.MAP
20: prev queue.push(max p.MAP)
21: max path.add(j = max p.pos, q = max p.model)

// Resample if too many particles
22: if particles.length > M then
23: particles = stratOptResample(particles, M)
24: end if

25: end for

// Recover the Viterbi path
26: v path = {}
27: curr cp = n
28: while curr cp > 0 do
29: 〈j, q〉 = max path[curr cp - α]
30: v path.add(start = j, end = curr cp, model = q)
31: curr cp = j
32: end while
33: return v path

Figure 1: CHAMP

6



Figure 2: Five segments of mean-zero Gaussian data with changing variance: an accurate seg-
mentation by CHAMP (left) and an inaccurate segmentation using Fearnhead and Liu’s original
algorithm (right).

Figure 3: Five segments of discrete-mean Gaussian data with changing variance: an accurate
segmentation by both CHAMP (left) and Fearnhead and Liu’s original algorithm (right). Note
that the mean changes with every segment.

The center panel of Figure 2 shows a segmentation of the data by CHAMP that correctly divides
the data into 5 segments. Identical changepoint locations were found in all 100 runs of CHAMP
(the stratified optimal resampling step can introduce stochasticity), and were all found to be within
2 data points of the true changepoint locations. The right panel of Figure 2 shows the failure of
Fearnhead and Liu’s algorithm to properly detect parameter switches within the single model, since
the data emissions were independent, as discussed in Section 3.2. This result held across a wide
range of parameter settings, as it is a fundamental deficit in the original algorithm.

4.2 1D Gaussian: discretized mean, parameterized variance

This experiment is identical to the previous example, with one important change—we now use 3
different models, each with a different static mean (0.0, 1.0, and 2.0). If the mean were instead
added as another continuous parameter of a single model, the Fearnhead and Liu algorithm would
have the same problem as before; changes would not be detected, since emissions are independent
and parameters are integrated out. However, by using separate models with different, static means,
we can compare CHAMP directly to the algorithm of Fearnhead and Liu, since it can detect changes
between the models.
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Figure 4: Five segments of discrete-mean Gaussian data with changing variance: an accurate
segmentation by CHAMP (left) and an inaccurate segmentation using Fearnhead and Liu’s original
algorithm (right) that misses a change in variance without a change in mean.

Again, five segments of data were generated (of lengths 30, 20, 50, 40, and 20) in which both
mean and variance changed each time (0.0, 1.0; 2.0, 1.8; 1.0, 0.7; 0.0, 1.2; and 1.0, 0.5). Figure 3
shows nearly identical accurate segmentations from both CHAMP and Fearnhead and Liu’s algo-
rithm. Both methods produced highly consistent segmentations and detected the correct number
of changepoints every time during 100 runs. CHAMP was not only competitive with Fearnhead
and Liu’s algorithm despite not integrating out model parameters, but actually performed slightly
better. CHAMP’s changepoints were, on average, a distance of 1.215 time steps from the true
changepoints, whereas Fearnhead and Liu’s were a distance 2.5 on average.

Finally, we demonstrate how under this same model, a change in variance without a change in mean
cannot be detected by Fearnhead and Liu’s algorithm. Again, five segments of data were generated
(of lengths 30, 30, 40, 40, and 20), but this time, there is one instance where the variance changes,
but the mean stays the same (0.0, 0.7; 2.0, 2.0; 2.0, 0.7; 0.0, 1.2; and 1.0, 0.5). Figure 4 shows that
CHAMP was able to accurately detect all the changes, while Fearnhead and Liu’s algorithm misses
the changepoint when only variance changed.

5 Conclusion

We introduced a general-purpose changepoint detection algorithm, CHAMP, that extends Bayesian
changepoint detection to settings in which it is difficult or undesirable to integrate out the param-
eters of candidate models. Instead, our method uses estimates of the maximum likelihood param-
eters for each segment, removing the need for integration of the model evidence. This approach
also allows for the detection of parameter changes within a single model, even when model emis-
sions are independent. We evaluated CHAMP on an artificially generated data set, demonstrating
the accuracy and consistency of the algorithm and it’s improved performance relative to another
state-of-the-art changepoint detection method.
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