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Abstract. This article describes the object recognition approach used
by team homer@UniKoblenz in the RoboCup@Home league. It is based
on feature extraction from rgb scene images. Features are matched with
features in learned object models and clustered in Hough-space to find
a consitent object pose. Using this approach, team homer@UniKoblenz
won the Technical Challenge of the RoboCup@Home league in 2012. The
described approach is available online as open source software provided
as a ROS package: http://wiki.ros.org/agas-ros-pkg
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1 Introduction

We describe the object recognition approach used by team homer@UniKoblenz
in the RoboCup@Home league. This algorithm has been designed to work with
partially occluded objects, cluttered background, change in ullimination and
arbitrary object poses.

As feature detector and descriptor we use SURF [1]. SURF is a point feature
detector which also provides a descriptor for matching. Its main advantage is
the fast computation while the features are distinctive enough to enable robust
object recognition even under difficult circumstances such as partial occlusion
and cluttered background.

The descriptors from the extracted interest points are matched with objects
from a database of features using nearest-neighbor matching. The identification
of clusters for a certain object was accomplished by using Hough-transform clus-
tering to abtain valid object pose hypotheses. In the final step a homography is
built using the clustered features to verify consistent pose parameters and select
the most probable object pose for each recognized object.

2 Hough-Transform Clustering of SURF Features

Our object recognition approach is based on 2D camera images. In the training
phase, SURF features are extracted and saved in a database. The recognition
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Fig. 1. Image processing pipeling for the training phase

phase calculates SURF features on an input image and matches features with the
database using nearest-neighbor matching. Wrong correspondences are removed
and object pose transformations are clustered in a multi dimensional Hough-
space accumulator. Finally, the matched features are verified by calculating a
homography.

To sum up, we extract from each image a number of SURF features f . A
feature is a tuple f = (x, y, σ, θ, δ) containing the position (x, y), scale σ and
orientation θ of the feature in the image, as well as a descriptor δ. Thus, the
features are invariant towards scaling, position in the image and in-plane rota-
tions. They are also robust towards changes in illumination and lesser off-plane
rotations.

2.1 Training

The image processing pipeling for the training phase is shown in Fig. 1. In order
to train the object recognition classificator an image of the background has to
be captured. Subsequently, an image of the object is acquired. From this two
images a difference image is computed to separate the desired object from the
background. Depending on the light conditions, the object might cast a shadow
on its surroundings. Naturally, this shadow would appear in the difference im-
age and thus be considered as part of the object. Therefore, the borders of the
extracted object can be adjusted to reduce the area contributed to the object
and thus remove shadows from the foreground. From the acquired object image
SURF features are extracted and stored in an object database. Further, images
with a different object view can be acquired and added to the object model in the
database. In their original publication, Bay et al. recommend 30◦ as an optimal
rotation between subsequently acquired images of an object for SURF compu-
tation [1]. It is not necessary to acquire different rotations of the same object
view, since SURF features and the presented algorithm are rotation invariant.

2.2 Recognition

The image processing pipeling for the recognition phase is shown in Fig. 2.
During object recognition no information about the background is available.
Thus, SURF features are computed on the whole input image. The obtained
features are then matched against the features stored in the object database
using nearest neighbor matching.
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Fig. 2. Image processing pipeling for the recognition phase

Nearest-Neighbor Matching For each feature in the input image the best
feature in the database is obtained by calculating a distance measure based on
the euclidean distance of the feature descriptors. Since simple distance thresh-
olds do not perform well in high dimensional space, Lowe introduced the distance
ratio [5], which is used here. The distance ratio is the ratio of the euclidean dis-
tance to the best fitting and the second best fitting descriptor. If this quotient is
low enough, the best fit is considered a matching feature. If the quotient is higher
than a given threshold, the best and the second best descriptor fit almost equally
well. This leads to the assumption that they are very likely the best matches
only by chance and not because one of them actually matches the query de-
scriptor. The distance ratio also sorts out ambiguous matches, which may result
from repeated textures on objects. For the fast nearest-neighbor and distance
computation in the high dimensional descriptor space we use an approximate
nearest neighbor approach [6].

Since SURF features are calculated on the whole input image, including a
potentially different background than in the training phase, not all features are
matched in this step. The result of feature matching is a set of matches between
features extracted from training images and the scene image. This set may still
contain outliers, i. e. matches between features which do not correspond to the
same object point. These erroneous correspondences are discarded in the next
step.

Hough-transform Clustering Each feature match gives a hint of the object’s
pose in the scene image. To cluster this information from all feature matches,
a four dimensional Hough space over possible object positions (x, y, σ, θ) is cre-
ated. Here, (x, y) is the position of the object’s centroid in the image, σ it’s
scale, and θ it’s rotation. The goal is to find a consistent object pose in order to
eliminate false feature correspondences from the previous step. This four dimen-
sional accumulator is visualized in Fig. 3. The red boxes represent translation
in x- and y-directions. Inside each red box, the x-axis represents scale and the
y-axis represents rotation. Each pixel inside a red box corresponds to a bin.
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Fig. 3. Objects are recognized and hypotheses about the object pose are clustered
in Hough-space using the four dimensional accumulator. Maxima appear white (left),
outliers appear gray (right). Red boxes indicate the translation in x- and y-direction.
Inside each red box horizontal and vertical translation encode the scale and rotation,
respectively.

Each feature correspondence is a hypothesis for an object pose and is added to
the corresponding bin in the accumulator. As suggested in [5] and [3], to reduce
discretization errors, each hypothesis is added to the two closest bins in each
dimension, thus resulting in 16 accumulator entries per feature correspondence.
Clusters of maxima in the Hough-space correspond to most probable object
poses, whereas bins with erroneous object poses get only little votes (Fig. 3).
Thus, outliers are removed and correct object poses are obtained. For the next
steps only bins with at least five entries are considered, since we want to find
a consistent pose applying homography calculation. This low threshold helps
finding small as well as partially occluded objects in the scene.

We chose 10 bins for each dimension in the Hough-space, resulting in 104 bins
describing different possible object positions in the image. Each feature corre-
spondence votes into 16 bins (the one it falls into and the closest ones of each
dimension to avoid discretization effects). More bins per dimension would allow
for a finer quantization of feature poses. However, this would also lead to po-
tential maxima being scattered among neighboring bins. Objects with sufficient
feature correspondences would be recognized with less confidence or would not
be recognized at all. Choosing less bins on the other hand would lead to feature
correspondences voting for wrong object poses or even wrong objects.

To calculate the bin for the object position the centroid of the object in the
scene sc has to be estimated. In the following, values o describe properties of an
object acquired during the training phase, whereas values s refer to keypoints
found in a test scene during the recognition phase. The translation vector v′

from the centroid of the learned object oc to the position of the feature keypoint
op in the object, normalized with the scale ratio of the scene keypoint sσ and
the object keypoint oσ is calculated according to Eq. 1.

v′ = (oc − op)
sσ

oσ
(1)

The resulting vector v′ has to be rotated to account for possible object rota-
tion in the scene. This is done by applying Eq. 2
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v =

(

cosα − sinα
sinα cosα

)

v′ (2)

where α = |oθ−sθ| is the minimal rotation angle between the feature rotation
oθ in the object and the feature rotation sθ in the scene. Finally, the estimated
centroid of the object in the scene sc is obtained by adding the feature’s position
in the scene sp to the calculated translation vector v (Eq. 3).

sc = (scx, scy)
T = v+ sp (3)

The bins for the x- and y-location in the accumulator, ix and iy, are calculated
as shown in Eq. 4 and Eq. 5,

ix =
⌊scx

w
bx

⌋

(4)

iy =
⌊scy

h
by

⌋

(5)

where w and h refer to the image width and height, and bx and by is the
number of bins in the x- and y-dimension of the Hough-accumulator, respectively.
Apart from ix and iy also the corresponding bins with position indices ix + 1
and iy + 1 are incremented to reduce discretization errors.

The index for the rotation bin is calculated using the difference between the
angles of the key point correspondences α and the total number of bins reserved
for the rotation in the accumulator br. Originally, α is in [−π, π], thus Eq. 6
normalizes the angle to be in [0, 2π].

i′r =
(α+ π)br

2π
(6)

To allow for the rotations by−π and π to be close together in the accumulator
the final index for the rotation bin is calculated according to Eq. 7.

ir = ⌊i′r⌋modbr (7)

Again, a second bin is used to reduce discretization errors. It’s index is cal-
culated according to Eq. 8:

ir = ⌊i′r + 1⌋modbr. (8)

The fourth dimension in the accumulator encodes the scale the point of in-
terest was found at. To determine the accumulator bin for scale, first the ratio
q between the scales of the key point in the scene sσ and in the learned object
oσ is needed (Eq. 9):

q =
sσ

oσ
. (9)

Further, the index is determined by the total number of bins used to represent
scale bs and the number of octaves n used for SURF extraction and is calculated
according to Eq. 10:
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bs =

⌊

log
2
(q)

2(n− 1)
+ 0.5

⌋

bs. (10)

As before, discretization errors are reduced by using a second bin with the
index bs +1. All scales that go beyond the range represented by the last bin are
subsumed in the bin for the biggest scale of the accumulator.

As a result of the Hough-transform clustering all features with consistent
poses are sorted into bins, while most outliers are removed because they don’t
form maxima in Hough-space (Fig. 3). So far, all features were processed inde-
pendently of all other features without taking into account the geometry of the
whole object. With the resulting possible object poses from the Hough-transform
clustering, the goal in the next step is to find the best geometric match with all
features in one accumulator bin.

Homography Calculation In this step, bins representing maxima in Hough-
space are inspected in order to find the bin that matches best the object pose.
All bins containing five keypoint correspondences or more are considered as
maxima. A perspective transformation is calculated between the features of a
bin and the corresponding points in the database under the assumption that all
features lie on a 2D plane. As most outliers were removed by discarding minima in
Hough-space, a consistent transformation is obtained here. RANSAC is used to
identify the best homography for the set of correspondences. The homography
with most point correspondences is considered to be the correct object pose.
Using the obtained homography the recognized object can be project into the
scene (Fig. 8). Since homography calculation is computationally expensive the
runtime of the object recognition algorithm would increase considerably if a
homography was calculated for each bin. To speed up the algorithm all bins are
sorted in descending order considering the number of features. A homography is
calculated starting with the bin containing the highest number of features. The
calculation terminates, if the next bin contains less features than the number
of found point correspondences in the calculation of the best homography so
far. The result is a homography describing the relative position, orientation and
scale of the best fitting training image for a test image, as well as the number of
features supporting this hypothesis.

Verification of Results The last step of our object recognition pipeline verifies
the results. Using a threshold of a minimal matched feature number to verify the
presence of an object in the scene is futile since large and heterogeneously struc-
tured objects contain more features than small and homogeneously structured
objects. Instead, an object presence probability p is calculated as

p =
fm

ft
(11)

where fm is the number of matched features of that object and ft is the total
number of features that are present in the area of the object. The number of
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features in the object area is calculated by projecting the object into the scene
using the homography and then counting all features in the bounding box of the
projected object.

3 Evaluation

This Section describes the different experiments performed to evaluate the pre-
sented object recognition approach. Experiments were performed to test the
influence of the accumulator size, variable background and light conditions, as
well as partial occlusion on the performance of the classification.

For the verification step we used a threshold of 15% (Eq. 11) and a minimum
of 5 matched features per object. These two values have the most influence on the
number of false positive recognitions. If they are not chosen restrictively enough,
the number of false positive recognitions increases. On the other hand, if they
are chosen too restrictively, no objects would be recognized or a higher number
of training views per object would be required to provide enough features for
matching.

When not stated otherwise, the accumulator size is 10 bins in each dimension.
For the evaluation, objects from the database presented in [4] were used. All
images in this database have a resolution of 640×480 pixels.

3.1 Performance

The evaluation was performed on an off-the-shelf notebook with an Intel Core 2
processor with 2 GHz and 2048 MB RAM. We measured the processing time of
the algorithm for one object view and a scene image with weak heterogeneous
background and the learned object in the same pose. The object view used in
this test is depicted in Fig. 4. The processing time needed for each step of our
object recognition algorithm is presented in Tab. 1

Initially, 500 key points are detected in the scene image. The keypoint de-
tection step takes the most time, since key points are not only extracted from
the object, but also from the background. The nearest neighbor matching yields
139 key point correspondences between the scene image and the learned object
view. However, some of these correspondences are erroneous as some of them

Table 1. Calculation time for each algorithm step

Algorithm Step # Key Points Time [ms]

Detection 500 697
NN-Matching 139 61
Hough-clustering 102 13
Homography 98 12
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Fig. 4. Left: Object view used for time measurement. Green arrows indicate key points.
Center: Key point correspondences after nearest neighbor matching. Some key points
of the learned object view are matched to the background. Right: Recognition result
after eliminating erroneous correspondences.

are matched with the background (Fig. 4). After the Hough-transform cluster-
ing only 102 correspondences remain. Finally, after calculating two homographies
in 12 ms the best is found with 98 remaining correspondences to form the object
recognition result (Fig. 4).

A total of 783 ms is needed for the calculation. This time increases if multiple
object and object views are loaded into the object database, as the extracted
features have to be compared with all data in the database. It is therefore crucial
not to learn too many views of an object (see next Subsection). However, the
most time consuming step (key point extraction) has to be performed only once
per scene image.

3.2 Learning Object Views

We performed an experiment to determine how many object views are necessary
for reliable object recognition. In order to do this it has to be determined by
what angle an object can be rotated without loosing too many key points. For
the evaluation, a single object view was acquired. Without loss of generality
the object view was defined as depicting a pose with a rotation of 180◦ about
its vertical axis. Subsequently, images from the database showing the object
at different rotations were used for testing. As shown in Fig. 5 the number of
matched features decreases rapidly for rotations beneath 150◦ and above 220◦.
Thus, a rotation of 30◦ between subsequently acquired image views is a good
trade-off between number of found features and image views.

3.3 Accumulator Size

The size of each dimension of the accumulator is a crucial parameter for the
performance of the algorithm. In our approach 10 bins per dimension proved
to be a good trade-off between quantization errors (if too many bins are used)
and insufficient accuracy (if too little bins are used). More than 10 bins lead to
a shorter runtime as the features are distributed among a greater bin number,
thus leading to less bins with a sufficiently large number of features for further
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Fig. 5. Number of matched features of an object view depending on the object’s rota-
tion. The object view was acquired at a rotation of 180◦.

processing. However, at the same time less features can be matched leading to
unreliable recognition results.

3.4 Background Variation

The experimental results of our algorithm with different backgrounds are pre-
sented in Tab. 2. A comparison of our algorithm with a statistical object recogni-
tion approach was given in [2]. The algorithm was trained with 5 different objects
(Fig. 6) and 5 views per object from [4]. The classification was performed on the
same 5 objects, but with 10 different views per object. The employed database
contains images of the same objects with homogeneous, weak heterogeneous, and
strong heterogeneous backgrounds (Fig. 7). Different light conditions are present
in the images with non-homogeneous backgrounds.

With increasing heterogenety of the background, more erroneous correspon-
dences are matched. If their number is very high, a false positive recognition
occurs. A challenge in recognition is posed by the objects perrier and truck as
they are small compared to the overall image size. With the low image resolution
only few pixels remain for the object and thus only a little number of features
can be extracted. During the Technical Challenge of the RoboCup we used a
higher image resolution. Please refer to Sec. 3.6 for more details.

3.5 Partial Occlusion

Another experiment was performed to test the algorithm with partially occluded
objects. Occlusion was simulated by partially replacing the object in the test
data with the corresponding background. The results are presented in Fig. 8.
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Table 2.Object recognition results on images with different backgrounds. The numbers
in brackets indicate the number of false positive recognitions.

Object hom. back. weak het. back. strong het. back.

bscup 100% 90% (1) 100%
nizoral 100% 100% (2) 90%
perrier 100% 100% (1) 100% (2)
ricola 100% 100% (1) 100%
truck 100% 90% 70% (1)

Fig. 6. Objects from [4] used for evaluation. From left to right: bscup, nizoral, perrier,
ricola, truck.

The unoccluded object is recognized with a total of 98 matched features and
a confidence of 38% (Eq. 11). With increasing occlusion the number of features
decreases, but is still high enough for a correct recognition of the object. However,
with increasing occlusion the accuracy of the computed homography (red lines
in Fig. 8) and thus of the bounding box decreases.

3.6 RoboCup@Home: Technical Challenge

This object recognition approach was also applied during the Technical Chal-
lenge in the @Home league of the RoboCup world championship that took place
in Mexico-City in 2012. 50 objects were placed on a table containing randomly
selected 15 of 25 previously known objects. Our robot could correctly identify 12
of the 15 present known objects correctly, while at the same time having no false
positive recognitions. This recognition result was achieved with a single scene
view. With this result our robot places first in the Technical Challenge and won

Fig. 7. Object nizoral from [4] with different backgrounds. From left to right: homo-
geneous, weak heterogeneous, and strong heterogeneous backgrounds.
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Fig. 8. Example images for detection of partially occluded objects. The unoccluded
object (top left) is recognized with 98 matched features and 38% confidence. The
occluded object have less features, but are still recognized correctly: 49 with 33% (top
right), 17 with 17% (bottom left), and 34 with 34% (bottom right).

the Technical Challenge Award. The input image for object recognition as well
as the recognition results are shown in Fig. 9.

We use a difference of 30◦ between object views to minimize training time
and the number of images in the database. Objects were trained and recognized
with an off-the-shelf digital camera (Canon PowerShot SX100 IS) and an im-
age resolution of 8 megapixels (MP). Since the object recognition took a long
processing time, further tests with the RoboCup@Home objects were performed
after the Technical Challenge (Tab. 3.6). The total recognition time depends on
the resolution in the training phase as well as on the resolution of the scene
image. However, the resolution in the training has a greater influence on the
total recognition time. According to Tab. 3.6 it is sufficient to create an object
database where features are extracted from 4 MP images, but use a resolution of
8 MP for recognition. This is not surprising since the object to camera distance
is usually smaller during training than during recognition. Thus, even with a
lower image resolution a sufficent number of features can be extracted and saved
in the database during training.

Table 3. Comparison of different image resolutions and their effect on recognition time
and recognition quality.

Resolution Resolution Recognition True False
Training [MP] Scene [MP] Time [s] Positives Positives

4 4 20 5 1
4 8 26 12 0
8 4 53 6 1
8 8 117 12 0

4 Conclusion

We presented our object recognition approach that we use in the RoboCup@Home
league. Our recognition approach performs well on images with cluttered back-
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Fig. 9. The input image for object recognition as acquired by our robot during the
Technical Challenge of the RoboCup (top). Object recognition results with 12 correctly
identified objects (bottom). During training and recognition an image resolution of
8 MP was used.

ground and partially occluded objects. Objects at different scales and with ar-
bitrary poses in the scene image are recognized reliably. For best results, it is
recommended to use high resolution images in order to extract sufficient features
for object representation. Our future work will concentrate on further evaluating
and optimizing our approach.
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